236 research outputs found

    Classifying Cue Phrases in Text and Speech Using Machine Learning

    Full text link
    Cue phrases may be used in a discourse sense to explicitly signal discourse structure, but also in a sentential sense to convey semantic rather than structural information. This paper explores the use of machine learning for classifying cue phrases as discourse or sentential. Two machine learning programs (Cgrendel and C4.5) are used to induce classification rules from sets of pre-classified cue phrases and their features. Machine learning is shown to be an effective technique for not only automating the generation of classification rules, but also for improving upon previous results.Comment: 8 pages, PostScript File, to appear in the Proceedings of AAAI-9

    Cue Phrase Classification Using Machine Learning

    Full text link
    Cue phrases may be used in a discourse sense to explicitly signal discourse structure, but also in a sentential sense to convey semantic rather than structural information. Correctly classifying cue phrases as discourse or sentential is critical in natural language processing systems that exploit discourse structure, e.g., for performing tasks such as anaphora resolution and plan recognition. This paper explores the use of machine learning for classifying cue phrases as discourse or sentential. Two machine learning programs (Cgrendel and C4.5) are used to induce classification models from sets of pre-classified cue phrases and their features in text and speech. Machine learning is shown to be an effective technique for not only automating the generation of classification models, but also for improving upon previous results. When compared to manually derived classification models already in the literature, the learned models often perform with higher accuracy and contain new linguistic insights into the data. In addition, the ability to automatically construct classification models makes it easier to comparatively analyze the utility of alternative feature representations of the data. Finally, the ease of retraining makes the learning approach more scalable and flexible than manual methods.Comment: 42 pages, uses jair.sty, theapa.bst, theapa.st

    Plan recognition for space telerobotics

    Get PDF
    Current research on space telerobots has largely focused on two problem areas: executing remotely controlled actions (the tele part of telerobotics) or planning to execute them (the robot part). This work has largely ignored one of the key aspects of telerobots: the interaction between the machine and its operator. For this interaction to be felicitous, the machine must successfully understand what the operator is trying to accomplish with particular remote-controlled actions. Only with the understanding of the operator's purpose for performing these actions can the robot intelligently assist the operator, perhaps by warning of possible errors or taking over part of the task. There is a need for such an understanding in the telerobotics domain and an intelligent interface being developed in the chemical process design domain addresses the same issues

    Computing and Exploiting Document Structure to Improve Unsupervised Extractive Summarization of Legal Case Decisions

    Full text link
    Though many algorithms can be used to automatically summarize legal case decisions, most fail to incorporate domain knowledge about how important sentences in a legal decision relate to a representation of its document structure. For example, analysis of a legal case summarization dataset demonstrates that sentences serving different types of argumentative roles in the decision appear in different sections of the document. In this work, we propose an unsupervised graph-based ranking model that uses a reweighting algorithm to exploit properties of the document structure of legal case decisions. We also explore the impact of using different methods to compute the document structure. Results on the Canadian Legal Case Law dataset show that our proposed method outperforms several strong baselines.Comment: NLLP Workshop Camera Ready in EMNLP 202

    Learning from Auxiliary Sources in Argumentative Revision Classification

    Full text link
    We develop models to classify desirable reasoning revisions in argumentative writing. We explore two approaches -- multi-task learning and transfer learning -- to take advantage of auxiliary sources of revision data for similar tasks. Results of intrinsic and extrinsic evaluations show that both approaches can indeed improve classifier performance over baselines. While multi-task learning shows that training on different sources of data at the same time may improve performance, transfer-learning better represents the relationship between the data
    corecore